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A B S T R A C T

Telemetry investigations to gather essential information about fish migrations are reliant on the behaviour,
condition and survival of the animals being unaltered by the tagging procedure. Twaite shad (Alosa fallax
Lacépède; ‘shad’) is a threatened clupeid fish for which there is a considerable knowledge gap on their ana-
dromous movements. They are also reported to be sensitive to handling and anaesthesia, resulting in practical
difficulties in tag implantation; previous investigations externally attached tags without sedation. The aim of this
study was to incrementally refine the acoustic-tagging protocol for shad via application of a previously un-tried
anaesthetic (i.e. tricaine methanesulphonate (MS-222)) and by surgical implantation of the tag in the peritoneal
cavity. All captured shad (n=25) survived handling, anaesthesia and tagging, and were detected moving up-
stream after release. Surgically implantation (n=5) was significantly faster than externally mounting the tag
(n=20) and time to recover was similar. Total upstream movement, total movement, residence time in receiver
array and speed of upstream movement were statistically similar for externally and internally tagged fish. Post-
spawning, a large proportion (68%) of tagged fish returned to the estuary, downstream of the receiver array.
Internal tagging under anaesthesia is recommended for studying anadromous movements of shad, given welfare
benefits during surgery and once at liberty, thus increasing the likelihood of tagged fish performing natural
behaviours. Further, implantation of tags programmed to last many years enables multiple spawning migrations
by the same individuals to be studied, which would lead to substantial advances in ecological knowledge and
potentially reduce the number of fish tagged.

1. Introduction

Fish telemetry investigations are routinely performed to gather es-
sential information about migrations, habitat use, predator–prey in-
teractions and responses to anthropogenic impacts, to help protect
species and the environments they inhabit (Hussey et al., 2015). Such
studies are reliant on the behaviour, condition and survival of the an-
imals being unaltered by the tagging procedure (Cooke et al., 2013).
This has resulted in a considerable amount of work to identify max-
imum tag burden, optimal tag implantation location and most appro-
priate methods of anaesthesia (Broadhurst et al., 2009; Ross and Ross,
2009). There have been considerable refinements in internal tagging
procedures, with tags often retained for the lifetime of the fish with
minimal long-term impact (Jepsen et al., 2002; Bridger and Booth,
2003; Cooke et al., 2011). External tag attachment remains important
in some studies and species, including those considered to be sensitive

to handling (Jepsen et al., 2015; Johnson et al., 2015). However, tags
can become fouled, increase drag during swimming, cause irritation
and harm as the fish grow, potentially impairing individual behaviour
and increasing mortality risk (Mulcahy, 2003; Cooke et al., 2013;
Jepsen et al., 2015).

Twaite shad Alosa fallax (Lacépède) (‘shad’ hereafter) is an ana-
dromous clupeid fish species that was once abundant and widespread
across Europe (Aprahamian et al., 2003). Their populations have,
however, declined considerably in the last century. Causal factors relate
primarily to anthropogenic disturbances, especially the construction of
weirs in the lower reaches of rivers that reduce access to spawning areas
(Jolly et al., 2012). The species is listed on Appendix III of the Bern
Convention and Annexes II and V of the EU Habitats Directive. Despite
their conservation importance, their anadromous spawning migration
remains under-studied primarily due to difficulties tagging shad, a
species reported to adversely react to handling and sedation (with 2-
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phenoxyethanol) that results in high mortality rates (Rooney and King,
2014; Breine et al., 2017). To overcome these challenges, recent in-
vestigations have externally mounted acoustic tags without sedation
because it is less invasive and thought to be quicker than surgical im-
plantation (Rooney and King, 2014; Breine et al., 2017). Although these
studies were successful, Breine et al. (2017) recommended further re-
search on the effects of anaesthesia, handling and tagging on shad.

The aim of this study was to refine the acoustic-tagging protocol for
shad, giving due consideration to their sensitivity to handling and se-
dation, to provide short-term welfare benefits during surgery and long-
term welfare benefits while at liberty, thus enabling expression of
natural behaviours. Objectives were to: (1) refine the external tag at-
tachment protocol of Breine et al. (2017) via application of previously
un-tried anaesthetic (i.e. tricaine methanesulphonate (MS-222)); (2)
further refine the procedure by surgically implanting the tag within the
peritoneal cavity; and (3) quantify the impacts of the tagging methods
through comparison of shad movement. As shad are iteroparous and,
potentially, philopatric (King and Roche, 2008), implantation of tags
programmed to last many years enables multiple spawning migrations
by the same individuals to be studied, which would lead to substantial
advances in ecological knowledge.

2. Methods

2.1. Fish capture and iterative tagging process

The refinement of the shad tagging protocol was completed during
the 2017 shad spawning migration in the River Severn, Western
England (Fig. 1). Twenty-five shad were captured from two locations,
downstream of Maisemore (n=8) and Upper Lode weirs (n=17), with
23 captured by angling (small lure with single barbless hook) and two
with a seine net (30-m long, 2-m deep and 10-mm mesh) (Table 1).
Tagging was an iterative process involving small batches of fish to
minimise the number of fish with compromised welfare if tagging was
unsuccessful and to enable refinements between batches. Thus, the in-
itial 3 captured fish were externally tagged under general anaesthesia
(batch 1), with tagging only recommencing once a receiver 14.8-km
upstream of the release location revealed the fish had recovered suffi-
ciently to continue their upstream movement. The decision to com-
mence surgically implanting tags in the body cavity (batch 4) was only
taken after a further 11 shad had been successfully tagged externally
(batch 2 and 3). The final six fish (batch 5) were tagged externally
because there was no opportunity to establish if the internally tagged
fish (batch 4) had been detected on the receiver upstream of the release
location.

2.2. External and internal tagging procedures

Prior to tagging, acoustic tags (20-mm long x 7-mm diameter (V7),
1.6-g weight in air and 29-mm long x 9-mm diameter (V9), 4.7-g weight
in air; www.vemco.com) were activated and tested with a hand-held
detector to verify they were transmitting; weight in air did not exceed
2% of fish mass. Following capture, fish were briefly held in water filled
containers (100 L) prior to their general anaesthesia (MS-222; 0.4-g per
10-L of water). All fish were inspected for signs of pre-existing injury
and disease; no captured fish were excluded from tagging. Whilst being
sedated, the fish were measured (fork length, nearest mm;
mean ± S.D.: 354 ± 37mm, range= 302–420mm), and scale sample
and a fin biopsy taken (for use in complementary studies). The influ-
ence of the anaesthetic was visually assessed using body, opercula and
eye movements, with fish only removed following their lack of a re-
sponse to touch, loss of ability to balance and the cessation of pectoral
fin and eye movements.

Externally mounted tags were attached using surgical thread
(Ethilon) passed through the dorsal musculature using hollow needles
and held in place using a rubber plate and aluminium sleeves (as per

Breine et al., 2017). Surgically implanted tags were disinfected with
providone-iodine and rinsed with saline solution before being im-
planted into the body cavity through a ventro-lateral incision made
with a scalpel, anterior to the muscle bed of the pelvic fins. The incision
was closed with an absorbable monofilament suture. Fish were held in a
clean V-shaped foam support and their eyes were covered with a damp
cloth during surgery. All fish were treated in compliance with the UK
ASPA (1986) Home Office licence number PPL 60/4400.

After surgery, fish were transferred to a damp sling for weighing (to
25 g; mean ± S.D.= 547 ± 173 g, range= 300–850 g) and then re-
turned to the river, being held whilst they orientated towards the flow
and were only released when they had regained balance, body reflexes
and swimming ability. This was considered preferable to holding fish in
tanks with water circulation and aeration, as shad have been recorded
to die during transportation and at fish farms (Clough et al., 2004). Fish
were released upstream of Maisemore Weir (n=8), downstream of
Upper Lode Weir (n=12) and upstream of Upper Lode Weir (n=5) as
part of the wider investigation (Table 1). Catchment-wide migration
was examined using 23 strategically located acoustic receivers (Vemco;
www.vemco.com) (Fig. 1); no fish were detected on the most upstream
receivers.

2.3. Data analysis

Time taken for anaesthesia, surgery and recovery when externally
and internally tagging shad was compared using t-tests (non-normal
data (Shapiro test) were log-transformed). It was not possible to re-
capture tagged shad to assess general health and condition, external tag
fouling or healing of incisions for internally implanted tags. Instead,
movements of fish in the river were used as evidence that the fish had
recovered from handling, anaesthesia and surgery. Specifically, the
amount of upstream movement (i.e. sum of all upstream movements),
total movement (i.e. sum of all up and downstream movements), and
residence time in the receiver array (i.e. number of days from release to
first detection on last receiver) were calculated for each fish. In addi-
tion, the speed of upstream movement between receivers was calcu-
lated (distance between receivers / last detection on upstream receiver
– first detection on downstream receiver). The movements of fish in
batches 1 and 4, captured and released at the same location but with
external and internal tag attachment, were compared using t-tests (non-
normal data (Shapiro test) were log-transformed) to quantify impacts of
the tagging methodology. Both movement and speed metrics represent
minimum estimates, as they are measured at the resolution of receiver
separation, thus back and forth movements between receiver detection
area are undetected. The fates of individual fish were broadly separated
into those that returned to the estuary and those that were assumed to
have died in the river, though the latter could not be separated from tag
failure or loss, and the potential cause of death could not be determined
(e.g. tagging induced, natural predation event, tagging-induced preda-
tion event or natural mortality after spawning). Data analysis was
performed primarily in Microsoft Excel and statistical comparisons
performed using R statistical software (version 3.4.3, R Core Team,
2017), with movement speed analysis in the V-Track package
(Campbell et al., 2012).

3. Results

All 25 fish caught during the investigation survived capture, hand-
ling, sedation and tagging, and were assessed as being in satisfactory
condition prior to be returned to the river. The time taken for anaes-
thesia was similar (t = −0.054171, d.f.= 5.5144, P = 0.959) whereas
internal implantation was significantly faster than external attachment
(t-test on logged data; t = −88.36, d.f. = 32.372, P < 0.001), both
usually within four minutes (Table 2). The mean time to recover was
also similar (t-test on logged data; t = −1.9709, d.f.= 7.8191, P=
0.085), and the longest recovery did not exceed six minutes for either
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Fig. 1. A map of acoustic receiver locations (black dots) in the River Severn catchment, including impediments to fish migration (black lines). Maisemore and
Llanthony weirs represent the tidal limit, and Maisemore and Upper Lode weirs were capture locations.
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treatment group (Table 2).
All shad were detected moving upstream in fresh water, i.e. against

the flow. Of all the batches, the first batch of fish (external tag) had the
greatest mean upstream movement (61.1 ± 51.7 km) and mean total
movement (122.9 ± 95.2 km), whereas the fourth batch (internal tag)
spent the longest mean time in the river (21.4 ± 8.8 days) and fastest
mean speed of upstream movement (1.10 ± 0.32m/s) (Table 3). Fish
in batches 1 and 4 were captured and released at the same location with
external and internal tags, respectively, and had similar upstream
movements (t-test on logged data; t = 0.095988, d.f.= 3.7202, P=
0.926), total movements (t-test on logged data; t = 0.31356,
d.f. = 4.3419, P= 0.768), times in the river (t-test; t = −0.61932,
d.f. = 5.5427, P= 0.560) and speed of upstream movements (t-test;
t=2.1894, d.f.= 6, P= 0.0711) (Table 3). The individual fish with
the greatest upstream (138.0 km) and total movements (281.4 km), and
longest time in the river (29.8 days) had an internal tag, whereas the
fastest upstream movements (1.79m/s) was by a fish that had an ex-
ternal tag.

Seventeen (68%) of the tagged shad performed a downstream mi-
gration to the estuary between 25 May and 21 June 2017, 14.7 ± 3.9
days after tagging. Eight fish were assumed to have died in the river
(though tag failure or loss could not be ruled out) but were tracked for a
similar amount of time, i.e. 10.6 ± 8.2 days. The one exception (ex-
ternal tag) was last detected 5 h after release, 5.7 km upstream of its
release location. Four fish (external= 2 and internal= 2) were last
detected in the vicinity of a suspected spawning location 9–27 days

after release, three of which moved downstream after release and
subsequently returned to fresh water. Three fish (external= 2 and in-
ternal= 1) were last detected moving downstream 5, 7 and 12 days
after release, each having moved a minimum of 18.7, 4.0 and 36.3 km,
respectively, in an upstream direction while in fresh water.

4. Discussion

During this investigation, twaite shad, a threatened anadromous fish
species that is sensitive to handling and sedation, were successfully
anaesthetised which enabled tags to be surgically implanted into the
peritoneal cavity. These findings are contrary to Rooney and King
(2014) who reported mortality of shad anaesthetised with 2-phenox-
yethanol and represents a substantial refinement of an accepted tagging
protocol (cf. Breine et al., 2017). The novel and successful use of MS-
222 for shad might be reflective of high variability in species-specific
responses to different anaesthetics (e.g. Readman et al., 2017). These
refinements have important welfare, ethical and methodological im-
plications for future shad tracking studies.

Twaite shad are anadromous and iteroparous. In this study, a large
proportion of the tagged fish (68%) migrated downstream to the es-
tuary after undertaking substantial movements upstream and spent an
appreciable amount of time in fresh water. This suggested that tagging
had little or no impact on their behaviour and that these fish evaded
predators (e.g. pike Esox lucius L., zander Sander lucioperca (L.), otter
Lutra lutra (L.) and cormorant Phalacrocorax carbo L.) and survived
spawning. The assumed mortality of individuals that did not return to
the estuary (though tag failure or loss could not be ruled out) was
considered a result of either natural predation or post-spawning mor-
tality, rather than a direct consequence of being tagged. This is because
they performed substantial upstream movements, entered the estuary
and returned to fresh water, were last detected at a suspected spawning
location and/or residence time was similar to fish that returned to the
estuary.

A commonly cited advantage of external tagging over surgical im-
plantation is that attachment can be faster (Jepsen et al., 2015; Breine
et al., 2017), but internal implantation was significantly faster than
external attachment in this investigation. Although there was no evi-
dence of detrimental impacts of externally mounting tags they may
have reduced swimming performance through drag or disequilibrium.
There are many other long-term benefits of internal implantation to
individual fish post-release, including improved tag retention, reduced
tissue damage, zero risk of biofouling and zero tag visibility to pre-
dators (Cooke et al., 2013; Jepsen et al., 2015). Surgically implanting
long-lived tags will also provide substantial advances in ecological
knowledge of iteroparous shad by enabling multiple annual spawning
migrations of the same individual to be studied. Consequently, the
number of fish that need to be tagged could also be reduced, thereby
complying with the reduction principle of animal research (Metcalfe
and Craig, 2011). These refinements should be transferable to other
fishes considered sensitive to handling and sedation, and should lead to
further refinements in tagging procedures during biotelemetry research.
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